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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy
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By

AHMED LATEEF KHALAF

November 2017

Chairman : Mohd Hanif Yaacob, PhD
Faculty : Engineering

Gaseous and liquid pollutants such as ammonia (NH3) gas and ethanol liquid, are

ubiquitous in daily human activities and have been extensively studied because of their

high toxicity and wide use in many fields. Common NH3 gas and ethanol liquid

detectors are electrical based. Although these electrical or conductometric sensors attain

high sensitivity, they suffer from drawbacks that include poor selectivity, high operating

temperature, and being prone to electromagnetic interference, which can be addressed

by optical sensor. Optical fiber sensors present advantages in certain aspects as

compared with electrical sensor, such as their compact size, capability to work in harsh

environment, and capacity for remote and distributed sensing. However, chemical

sensing using optical fiber has not been fully explored.

Presently, nanotechnology enabled chemical sensors have been increasingly used to

enhance the sensing performance as compared with the conventional sensors toward

target analytes owing to their high surface area. The sensing layer based on

nanostructures has been identified to work at low temperature with high sensitivity.

Therefore, this research project aims to design and comprehensively analyze optical

fiber based NH3 gas and ethanol liquid sensors with the incorporation of different

nanostructure coatings as sensing layers. Plastic optical fiber (POF) was selected as the

transducing platform for the sensor because of its low cost, ease in fabrication, and

suitability for remote sensing applications. The sensitivity of POF based sensors can be

improved by simply polishing part of the fiber to form side-polished optical fiber

(SPPOF) using simple mechanical polishing technique. Thus, the light interaction upon

coating with the sensing layer will significantly improve and great absorbance response

will be achieved upon exposure to different target chemical concentrations. The

influence of nanostructures morphology and roughness on the sensing performance was

also studied in this PhD research.
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The nanostructures under investigation were tungsten oxide (WO3), graphene oxide

(GO), and carbon nanotubes (CNTs). Chemically synthesized aluminum oxide

(Al2O3)/polyaniline (PANI) and graphene/PANI nanocomposites were also considered

as sensing layers. The different nanostructured sensing layers were integrated with the

polished area of the POF via radio frequency sputtering and drop-casting deposition

techniques. Micro-nano characterization techniques such as SEM, EDX, AFM, Raman

spectroscopy and XRD were utilized to obtain detailed structural properties of these

nanostructures to fundamentally understand their functionalities with respect to the

optical sensor performance.

The response of the sensors towards target chemicals at different concentrations was

measured using absorbance change within the wavelength range of 400 – 800 nm at

room temperature. The sensing performance was evaluated in terms of response time,

recovery time, sensitivity, and repeatability. The chemical sensing performance of the

developed SPPOF sensors was compared with the performance of another modified

fiber, which is uncladded POF (UCPOF), using absorbance measurement. The optical

sensing mechanisms of the analyte molecules and nanostructured sensing layer coated

onto the polished fiber region towards NH3 and ethanol with concentrations of 0.125%

– 1% and 20% – 100%, respectively, at room temperature were explained.

For the first time, according to the author’s knowledge, an SPPOF NH3 sensor coated

with sputtered gold (Au)/WO3 nanostructure thin films was successfully developed. The

obtained sensitivity, response time and recovery time were 29.26/vol%, 1.2 min, and 7.3

min, respectively. Novel NH3 sensor based on SPPOF coated with graphene/PANI

nanocomposite demonstrated significant sensitivity of 55.47/vol%. The remote sensing

performance of the developed SPPOF sensors was also investigated by connecting them

to 1.1 km multimode silica optical fiber. The SPPOF remote sensors coated with

graphene/PANI and CNT exhibited excellent sensitivities of 16.63/vol% and 0.23/vol%

toward different concentrations of NH3 and ethanol, respectively, at room temperature

with high selectivity and long shelf life. The developed chemical sensors using SPPOF

coated with nanomaterials showed superior performance as compared with the electrical

based sensors. The excellent sensing performance of the optical fiber sensors via low

cost and simple techniques indicates its high efficiency for remote chemical sensing in

various industrial and environmental applications.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

TEKNIK PENGILAPAN SEBAHAGIAN PERMUKAAN GENTIAN OPTIK
PLASTIK DENGAN UNSUR NANO DALAM APLIKASI SENSOR KIMIA

Oleh

AHMED LATEEF KHALAF

November 2017

Pengerusi : Mohd Hanif bin Yaacob, PhD
Fakulti : Kejuruteraan

Gas dan cecair berbahaya seperti gas ammonia (NH3) dan cecair etanol, terdapat dalam

aktiviti manusia seharian dan kajian meluas telah dijalankan kerana tahap keracunan

yang tinggi dan penggunaannya yang meluas dalam pelbagai bidang. Biasanya, medium

pengesanan gas NH3 dan pengesan cecair etanol adalah berasaskan elektrik. Walaupun

sensor elektrik atau konduktor metrik ini mencapai sensitiviti yang tinggi, ia

mempunyai kelemahan termasuk pemilihan yang terhad, suhu operasi yang tinggi, dan

terdedah kepada gangguan elektromagnetik, dimana ini boleh diatasi menggunakan

sensor optik. Kelebihan sensor optik dalam aspek tertentu berbanding dengan sensor

elektrik, seperti saiz yang kompak, keupayaan untuk bekerja dalam persekitaran yang

mencabar, dan boleh beroperasi dalam kawalan jarak jauh dan serta pengesanan secara

berkelompok. Walau bagaimanapun, sensor kimia yang menggunakan gentian kaca

optik masih belum diterokai sepenuhnya.

Pada masa ini, nanoteknologi membolehkan sensor kimia semakin digunakan untuk

meningkatkan prestasi pengesanan berbanding dengan sensor konvensional ke arah

kejituan pada kawasan permukaannya yang luas. Lapisan penginderaan berdasarkan

struktur nano telah dikenal pasti untuk beroperasi pada suhu yang rendah dengan

kepekaan yang tinggi. Oleh itu, projek penyelidikan ini bertujuan untuk membuat

analisis dan menganalisis sensor cecair gas NH3 dan etanol cecair etanol secara

terperinci dengan memasukkan lapisan struktur nano yang berbeza sebagai lapisan

penginderaan. Gentian optik plastik (POF) dipilih sebagai platform pengantara untuk

sensor kerana kosnya yang lebih rendah, kemudahan dalam fabrikasi, dan kesesuaian

untuk aplikasi pengesanan jarak jauh. Sensitiviti sensor berasaskan POF boleh

ditingkatkan dengan menggilap sebahagian daripada gentian fiber untuk membentuk

medan optik berpilingan sisi (SPPOF) menggunakan teknik penggilap mekanikal

mudah. Oleh itu, interaksi cahaya apabila salutan dengan lapisan penginderaan akan
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memberi kesan yang lebih tepat serta tindak balas penyerapan yang baik boleh dicapai

apabila terdedah kepada kepekatan kimia yang berlainan. Pengaruh morfologi struktur

nano dan status prestasi penderiaan juga dikaji dalam penyelidikan PhD ini.

Bahan-bahan nano yang digunakan adalah tungsten oxide (WO3), graphene oxide (GO),

dan nanotube karbon (CNTs). Aluminium oksida sintetik (Al2O3)/polyaniline (PANI)

dan graphene/PANI komposit nano juga digunakan sebagai lapisan penginderaan.

Lapisan penginderaan struktur nano yang berbeza telah diintegrasikan dengan kawasan

yang digilap oleh POF menerusi teknik pendepositan frekuensi dan spekteran frekuensi

radio. Teknik pengekstrakan mikro-nano seperti SEM, EDX, AFM, spektroskopi

Raman dan XRD digunakan untuk mendapatkan maklumat terperinci tentang struktur

nano bagi memahami fungsinya dengan prestasi sensor optik.

Tindak balas sensor terhadap bahan kimia pilihan pada kepekatan yang berbeza diukur

dengan memanupulasi penyerapan dalam jarak panjang 400 – 800 nm pada suhu bilik.

Prestasi penginderaan dinilai dari segi masa tindak balas, masa pemulihan, kepekaan,

dan kebolehulangan. Prestasi penginderaan kimia sensor SPPOF dibandingkan dengan

prestasi gentian optik yang lain, seperti POF (UCPOF), dengan menggunakan teknik

pengukuran penyerapan. Mekanisme penderiaan optik molekul analitik dan lapisan

penderiaan struktur nano yang yang telah digilap ke dalam NH3 dan etanol dengan

kepekatan 0.125% – 1% dan 20% – 100%, pada suhu bilik dijelaskan.

Untuk pertama kali, sensor SPPOF NH3 yang dilapisi dengan emas (Au)/ WO3 struktur

nano nipis berjaya dibangunkan. Sensitiviti, masa tindak balas dan masa pemulihan

yang diperolehi masing-masing adalah 29.26/vol%, 1.2 min, dan 7.3 min. Sensor Novel

NH3 berdasarkan SPPOF yang disalut dengan graphene / PANI nano composite

menunjukkan kepekaan yang signifikan 55.47/vol%. Prestasi penderiaan jauh dari

sensor SPPOF yang maju juga dikaji dengan menyambungkannya ke gentian optik

multimode silika sepanjang 1.1 km. Sensor penderiaan jauh SPPOF yang disalut dengan

graphene/PANI dan CNT mempamerkan sensitiviti yang sangat baik dari 16.63/vol%

dan 0.23/vol% dalam kepekatan NH3 dan etanol yang berbeza, masing-masing pada

suhu bilik dengan selektiviti tinggi dan jangka hayat yang panjang. Sensor kimia yang

dibangunkan menggunakan SPPOF yang disalut dengan kemasan nano menunjukkan

prestasi yang unggul berbanding dengan sensor berasaskan elektrik. Prestasi penderiaan

optik yang sangat baik dengan kos yang rendah dan teknik mudah menunjukkan

kecekapan tinggi untuk penginderaan kimia jarak jauh dalam pelbagai aplikasi

perindustrian dan persekitaran.
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CHAPTER 1

INTRODUCTION

This chapter presents an overview on the research conducted by the author. Section 1.1

presents a background on optical fibers, with a focus on the importance of their use in

chemical sensing applications. The motivation behind the research is discussed in the

same section, which explains how the problem statements are formed as a result of the

limitations found in conventional chemical sensors. Section 1.2 reviews the advances in

optical sensors integrated with nanostructured coatings. Section 1.3 presents the problem

statements. Section 1.4 discusses the research objectives and research questions. Finally,

Sections 1.5 and 1.6 present the research scope and thesis organization, respectively.

1.1 Research Background and Motivations

Air and liquid pollutants are ubiquitous in daily human activities, such as agriculture,

food processing, industrial coolants, and household detergents. Two important

chemicals for industrial applications are ammonia (NH3) and ethanol. Advanced NH3

gas and ethanol liquid real-time sensing methods have been continuously developed

over the past few decades because of their high toxicity and wide use in many fields.

Thus, it is critical to develop highly sensitive and reliable sensors to measure these

chemicals in their applications and to prevent safety hazards.

NH3 is a natural gas that exists in the earth atmosphere. This natural gas is colorless

flammable gas with strong odor and is commonly produced from various sources, such as

chemical plants, livestock farming, and motor vehicles [1]. The world market production

of NH3 is estimated to grow at an average rate of 3.5% in 2017, with a global capacity of

approximately 198 million tons, which leads to revenues of approximately one hundred

billion US dollar [2, 3].

NH3 is an irritant gas, and its permissible exposure limit is 35 ppm according to

occupational safety and health administration (OSHA) [4]. The inhalation of large

quantities of NH3 can cause harmful effects on human health, such as eye irritation,

pulmonary edema, and respiratory arrest [5]. Recently, in India, five people were killed

and over 140 others complained of breathing problems and eye irritation after they

inhaled large amounts of NH3 gas that leaked from an NH3 gas tanker. The leakage of

gas also can lead to the death of plants and animals within 4 km radius [6]. Therefore,

NH3 concentrations should be monitored using reliable and low cost sensors that can be

operated at room temperature to prevent environmental pollution risks and comply with

the safety regulations.
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Ethanol is a volatile organic compound (VOC) that is commonly used in the food,

beverage, fuel and pharmaceutical industries [7, 8]. The ethanol production has risen

substantially over the past decade as a result of the rise in demand for ethanol blend

fuels. A report indicated that 14.7 billion gallons of ethanol was transported in the

United States of America (USA) either by rail or barges from production facilities in

2015 [9]. Ethanol is currently considered one of the largest volume hazardous materials

shipped by rail in the USA aside from crude oil and chlorine [10, 11]. Figure 1.1 shows

the increase in production volume of ethanol in the USA from 2000 to 2012. One of the

major concerns is ethanol leakage or spills during transportation or storage. Liquid

ethanol is flammable, with a lower explosive limit to an upper explosive limit range of

3.3% – 19% [12]. In addition, ethanol is colorless and is completely miscible in water.

Eleven major spills were reported in the USA from 2006 to 2010, which mostly resulted

in water contamination [12]. Exposure to high concentrations of ethanol may cause

irritation to the skin and inflammation of the nasal mucous membrane. Therefore,

ethanol detection in a liquid medium is crucial for the quality control of food, beverages

and medicines [13, 14].

Figure 1.1: Ethanol production from 2000 to 2015 [12].

A wide range of real-time approaches have been developed for sensing applications,

such as liquid chromatography and mass spectrometry, to meet such an ever-increasing

demand [15]. However, despite their good selectivity, these approaches suffer from

limitations that include high cost and bulky size. Meanwhile, low cost conductometric

and electrochemical sensors attain high sensitivity in chemical sensing applications

[16, 17]. However, these sensors are limited by several drawbacks, such as poor

selectivity, high power consumption, and susceptibility to electromagnetic interference

(EMI), which restrict their use in practical application. In addition, all the

aforementioned sensors require an elevated working temperature (> 300 ◦C) and

several mechanical moving elements, thereby leading to implementation difficulties for
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remote sensing applications. Thus, to overcome these drawbacks, optical fibers have

been explored as an alternative to the conventional chemical sensors owing to their

numerous advantages. Optical fiber sensors are easily integrated into optical networks

and telecommunications systems with the added capability of distributed and remote

sensing. The introduction of chemical based optical fiber sensors in the last few decades

has gained great attention because of their micro-sized, immunity to EMI, and their

capability to work in harsh environments [18]. Since then, optical fiber based chemical

sensors have been adopted in various applications and enormous efforts have been made

to enhance their performance.

1.2 Optical Fiber Sensor with Nanostructured Sensing Enhancements

Optical fiber sensors have gained much popularity and market acceptance in recent

years due to the number of advantages compared with their electrical counterparts.

These advantages include miniaturization, flexibility, and immunity to EMI in addition

to their capability to operate in hostile environments, such as high temperature or

chemically reactive surroundings [19]. Optical fibers are also inert, passive, and

electrically nonconductive. As a result, optical fiber is safe to be used near flammable or

explosive materials, such as in the oil and gas industries [20].

The recent advances in optical sensing with nanostructured material enhancements are

making a significant impact on the direction of future sensor technology. The rapid

progress in nanofabrication methods and nanoparticle synthesis is leading to the

development of various new nanostructured materials with unique physical and

chemical properties. Nanostructures are materials that have at least one dimension in

nanoscale range, which is less than 100 nm [21]. These materials are particularly

suitable for chemical and biological sensing applications owing to the fact that many of

the reactions occur in nanoscale [22].

When materials are reduced to nanoscale dimensions, they reveal new and unique

properties such high surface-to-volume ratio, high heat capacity, mechanical strength,

and changes in magnetic behavior. Distinctive changes in optical properties include

reflectivity, absorbance, and luminescence [23].

Optical sensors with nanostructured enhancements are new and an interesting path for

developing chemical sensors. Integration of nanostructured material thin films on

optical transducing platforms has demonstrated improvements in sensing performance.

The optical techniques generally employed to measure response in chemical sensing

applications are based on reflectance, absorbance, fluorescence, surface plasmon

resonance, and luminescence changes, which are caused by the interaction between the

nanostructured coatings and diverse chemical molecules [24].
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1.3 Problem Statement

Most of chemical sensors are electrical based. The main reason electrical sensors are

widely used is due to their high sensitivity and low cost. Nonetheless, these sensors

suffer from poor selectivity and limited deployment in a volatile environment, especially

where high risk of explosion or proneness to EMI is expected. Dangerous chemicals,

such as NH3 gas and ethanol liquid, are highly toxic and flammable. The limitations

of electrical sensors to detect these chemicals can be addressed with the use of optical

transducers, such as optical fiber.

Common optical fiber sensors are based on glass or silicon dioxide (SiO2) material. Glass

sensor is highly deployed in optical communications because of its high temperature

and low cost. Nevertheless, its high fragility owing to small waist diameter (<100 μm)

and the complexity in its modification can restrict the platform deployment in sensing

applications.

Plastic optical fiber (POF) offers numerous advantages, including low cost, ease of

manipulation, and high degree of flexibility [25]. In optical fiber chemical sensors,

strong interaction between the sensing layer and light propagates in the fiber core is

highly required to improve their sensitivity. This can be achieved by modifying the POF

through removing part of the fiber structure via a simple mechanical polishing technique

and coating it with an active sensing layer. Changes in the optical, physical, and

chemical properties may occur as a result of the interaction between the analyte

molecules and the sensing layer coated on the exposed area of the optical fiber.

Most of the sensing layers deployed in chemical detection during the last decades are

dominantly based on thick films (approximately more than 10 μm). Nevertheless, the

advancement of nanotechnology provides opportunity to integrate sensing materials at

nanoscale with transducing platforms. Nanostructured materials have numerous

advantages that include large surface-to-volume ratio, high specific surface area, and

several surface active sites [26, 27]. Recent studies have identified that the use of

nanostructured material as active sensing layer can improve the chemical sensing

performance with regard to sensitivity, selectivity, and response time in comparison with

thick film sensing layers [28].

Remote sensing using optical fibers has attracted great attention in many applications in

recent years because of the distinctive features of these optical fibers that make them

efficient candidate for applications in harsh and combustible environments [29].

Moreover, the telemetry channel based on optical fiber is immune to EMI in addition to

its capability to avoid reflections from natural and artificial obstacles and bad weather

interruptions [30]. Generally, the main concept of optical fiber remote sensing is to

continuously observe a structure from a central station located away from the sensor

critical site without the need for electrical power feeds in the remote locations. Thus,
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optical fiber remote sensor allows instant hazard detection as compared with the

currently used electrical remote sensor that suffers from complexity and slow response

times [31]. Apart from that, the use of optical fiber remote sensing for chemical sensing

applications remains in its infancy stage.

1.4 Research Objectives and Questions

The aim of this research is to design and fabricate SPPOF for chemicals detection by

integrating nanostructured materials as sensing layer. The objectives to achieve this

include:

1. To fabricate and characterize side-polished POF (SPPOF) for NH3 and ethanol

sensing.

2. To synthesis and deposit the nanomaterial onto the polished sensing area.

3. To investigate and relate the micro-nano characteristics of the nanomaterials and

their influence on the optical sensor’s performance.

4. To analyze and evaluate the optical sensing performance of the developed in-situ

and remote SPPOF sensors towards NH3 and ethanol at room temperature.

5. To propose and explain the chemical sensing mechanism of all the developed novel

optical fiber sensors.

To achieve these objectives, the following research questions are outlined:

1. What sensing layers are suitable to be used in order to obtain a response to NH3

and ethanol?

2. What are the suitable synthesis and deposition methods accessible to coat

nanomaterials onto optical fibers?

3. What are the optimized dimensions of the SPPOF as chemical sensor?

4. How different are the sensing performances of side-polished optical fiber sensors

coated with various nanostructured sensing layers?

5. How to understand the nature of interaction between the target chemical and the

sensing layer?

Based on the research questions, the research project focused on developing SPPOF as a

chemical sensor and investigating suitable nanostructured materials that would enhance

the performance of the optical sensor toward NH3 gas and ethanol liquid detection. The

author developed an SPPOF-assisted chemical sensor coated with nanostructured sensing
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layers of gold (Au)/tungsten oxide (WO3), graphene oxide (GO) and carbon nanotubes

(CNT) in addition to aluminum oxide (Al2O3)/polyaniline (PANI) and graphene/PANI

nanocomposites. The nanostructured materials were deposited on the proposed optical

fibers by use of drop-casting and radio frequency (RF)-sputtering techniques to analyze

their sensing performance.

1.5 Research Scope

This research project covers the development of opto-chemical sensor starting from

materials leading to optical devices. The scope of the project can be best explained with

the tree diagram in Figure 1.2. The solid lines represent the direction followed in this

thesis to achieve the goal and objectives of the work, while the dotted lines refer to other

research areas that are out of the scope of this work. The highlighted boxes represent the

elements deployed to achieve the research objectives proposed for the development of

optical fiber chemical sensor.

1.6 Thesis Organization

This thesis is divided into six chapters. Chapter 1 presents an overview of the research

area, focusing on the problems that motivated this work. In addition, this chapter

demonstrates the problem statements, aim and objectives of the research. Chapter 2

indicates a comprehensive review on the optical fiber types and properties and the

principles of optical measurement. A critical review on optical fiber sensors used for

chemical applications is also discussed in this chapter. The nanostructured materials

utilized in this PhD work are included, and their properties and applications are

discussed. The reported research, most relevant to this project, is critically reviewed,

showing the trade off in the performance of these works. Chapter 3 gives the full

description for the fabrication and design of SPPOF and uncladded POF (UCPOF)

sensors. The nanostructured material synthesis and deposition are also presented and

discussed, followed by the testing setup for the developed optical fiber sensors. Chapter

4 provides the characterization results of the nanostructures deposited on SPPOF and

UCPOF. Chapter 5 discusses the sensing results obtained from the SPPOF and UCPOF

sensors performance integrated with nanostructured materials toward NH3 and ethanol.

The effect of the morphology of the nanostructured materials on the sensor responses

toward different concentrations of NH3 and ethanol is elucidated. The performance of

the remote sensing of SPPOF is discussed and configured for different nanomaterial

coatings. This chapter also discusses the sensor performance in terms of sensitivity,

selectivity, repeatability, and response and recovery times. The optical sensing

mechanisms for NH3 gas and ethanol liquid interaction with different nanomaterials are

explained. Chapter 6 concludes the thesis and presents a list of contributions of this

work. Potential ideas to be pursued as future works are also suggested.
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Figure 1.2: Study scope.
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[167] C. Herrero-Latorre, J. Álvarez-Méndez, J. Barciela-Garcı́a, S. Garcı́a-Martı́n, and

R. Peña-Crecente, “Characterization of carbon nanotubes and analytical methods

for their determination in environmental and biological samples: A review,”

Analytica chimica acta, vol. 853, pp. 77–94, 2015.

[168] H. Elhaes, A. Fakhry, and M. Ibrahim, “Carbon nano materials as gas sensors,”

Materials Today: Proceedings, vol. 3, no. 6, pp. 2483 – 2492, 2016. Recent

Advances In Nano Science And Technology 2015.

[169] R. H. Baughman, A. A. Zakhidov, and W. A. De Heer, “Carbon nanotubes–the

route toward applications,” science, vol. 297, no. 5582, pp. 787–792, 2002.

[170] M. Holzinger, A. Le Goff, and S. Cosnier, “Carbon nanotube/enzyme biofuel

cells,” Electrochimica Acta, vol. 82, pp. 179–190, 2012.

[171] S. Manivannan, A. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, and K. C.

Park, “Single-walled carbon nanotubes wrapped poly-methyl methacrylate fiber

optic sensor for ammonia, ethanol and methanol vapors at room temperature,”

Sensors and Actuators B: Chemical, vol. 171, pp. 634–638, 2012.

[172] A. Shabaneh, S. Girei, P. Arasu, M. Mahdi, S. Rashid, S. Paiman, and M. Yaacob,

“Dynamic response of tapered optical multimode fiber coated with carbon

nanotubes for ethanol sensing application,” Sensors, vol. 15, no. 5, pp. 10452–

10464, 2015.

[173] H.-Z. Yang, X.-G. Qiao, M. M. Ali, M. R. Islam, and K.-S. Lim, “Optimized

tapered optical fiber for ethanol (C2H5OH) concentration sensing,” Journal of
Lightwave Technology, vol. 32, no. 9, pp. 1777–1783, 2014.

[174] A. Shabaneh, S. H. Girei, P. Arasu, S. Rashid, Z. Yunusa, M. A. Mahdi, S. Paiman,

M. Z. Ahmad, and M. Yaacob, “Reflectance response of optical fiber coated with

carbon nanotubes for aqueous ethanol sensing,” IEEE Photonics Journal, vol. 6,

no. 6, pp. 1–10, 2014.

[175] L. R. Shobin, B. Renganathan, D. Sastikumar, K. C. Park, and S. Manivannan,

“Pure and iso-butyl methyl ketone treated multi-walled carbon nanotubes for

ethanol and methanol vapor sensing,” IEEE Sensors Journal, vol. 14, no. 4,

pp. 1238–1243, 2014.

[176] S. Ippolito, S. Kandasamy, K. Kalantar-Zadeh, and W. Wlodarski, “Hydrogen

sensing characteristics of WO3 thin film conductometric sensors activated by Pt

and Au catalysts,” Sensors and Actuators B: Chemical, vol. 108, no. 1, pp. 154–

158, 2005.

1
�



© C
OPYRIG

HT U
PM

[177] J. Cheng, J. Wang, Q. Li, H. Liu, and Y. Li, “A review of recent developments

in tin dioxide composites for gas sensing application,” Journal of Industrial and
Engineering Chemistry, vol. 44, pp. 1–22, 2016.

[178] E. Dilonardo, M. Penza, M. Alvisi, R. Rossi, G. Cassano, C. Di Franco,

F. Palmisano, L. Torsi, and N. Cioffi, “Gas sensing properties of MWCNT layers

electrochemically decorated with Au and Pd nanoparticles,” Beilstein Journal of
Nanotechnology, vol. 8, p. 592, 2017.

[179] A. Cusano, M. Consales, A. Crescitelli, and A. Ricciardi, Lab-on-fiber technology,

vol. 56. Springer, 2015.

[180] M. Ando, R. Chabicovsky, and M. Haruta, “Optical hydrogen sensitivity of noble

metal–tungsten oxide composite films prepared by sputtering deposition,” Sensors
and Actuators B: Chemical, vol. 76, no. 1, pp. 13–17, 2001.

[181] D. Buso, M. Guglielmi, A. Martucci, G. Mattei, P. Mazzoldi, C. Sada, and M. L.

Post, “Growth of cookie-like Au/NiO nanoparticles in SiO2 sol–gel films and their

optical gas sensing properties,” Crystal Growth and Design, vol. 8, no. 2, pp. 744–

749, 2008.

[182] L. K. Randeniya, P. J. Martin, A. Bendavid, and J. McDonnell, “Ammonia sensing

characteristics of carbon-nanotube yarns decorated with nanocrystalline gold,”

Carbon, vol. 49, no. 15, pp. 5265–5270, 2011.

[183] Z.-D. Lin, S.-J. Young, and S.-J. Chang, “Carbon nanotube thin films

functionalized via loading of Au nanoclusters for flexible gas sensors devices,”

IEEE Transactions on Electron Devices, vol. 63, no. 1, pp. 476–480, 2016.

[184] M. Gautam and A. H. Jayatissa, “Ammonia gas sensing behavior of graphene

surface decorated with gold nanoparticles,” Solid-State Electronics, vol. 78,

pp. 159–165, 2012.

[185] A. R. Tao, S. Habas, and P. Yang, “Shape control of colloidal metal nanocrystals,”

small, vol. 4, no. 3, pp. 310–325, 2008.

[186] C. Rao, G. Kulkarni, P. J. Thomas, and P. P. Edwards, “Size-dependent chemistry:

properties of nanocrystals,” Chemistry–A European Journal, vol. 8, no. 1, pp. 28–

35, 2002.

[187] L. Bilro, N. J. Alberto, L. M. Sa, J. de Lemos Pinto, and R. Nogueira, “Analytical

analysis of side-polished plastic optical fiber as curvature and refractive index

sensor,” Journal of Lightwave Technology, vol. 29, no. 6, pp. 864–870, 2011.

[188] C. Teng, F. Yu, N. Jing, Y. Ding, Z. Si, and J. Zheng, “Investigation of

refractive index sensors based on side-polished plastic optical fibers,” Optical
Fiber Technology, vol. 36, pp. 1 – 5, 2017.

[189] F. Sequeira, D. Duarte, L. Bilro, A. Rudnitskaya, M. Pesavento, L. Zeni, and

N. Cennamo, “Refractive index sensing with D-shaped plastic optical fibers for

chemical and biochemical applications,” Sensors, vol. 16, no. 12, p. 2119, 2016.

1
�



© C
OPYRIG

HT U
PM

[190] B. Ghanbarzadeh, S. A. Oleyaei, and H. Almasi, “Nanostructured materials

utilized in biopolymer-based plastics for food packaging applications,” Critical
reviews in food science and nutrition, vol. 55, no. 12, pp. 1699–1723, 2015.

[191] Z. H. Khan, A. Kumar, S. Husain, and M. Husain, Introduction to Nanomaterials,

pp. 1–23. New Delhi: Springer India, 2016.

[192] F. R. Baptista, S. Belhout, S. Giordani, and S. Quinn, “Recent developments

in carbon nanomaterial sensors,” Chemical Society Reviews, vol. 44, no. 13,

pp. 4433–4453, 2015.

[193] U. Tisch and H. Haick, “Nanomaterials for cross-reactive sensor arrays,” MRS
bulletin, vol. 35, no. 10, pp. 797–803, 2010.

[194] M. U. Qadri, A. F. D. Diaz, M. Cittadini, A. Martucci, M. C. Pujol, J. Ferré-
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